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ABSTRACT 

This article explores how measurement systems having 

correlated characteristics are analyzed through studies of 

gage repeatability and reproducibility (GR&R). The main 

contribution of this research is the proposal of four new 

indexes for multivariate analysis of a measurement system. To 

prove their efficiency, the study generates simulated data with 

different correlation structures for measurement systems 

classified as acceptable, marginal, and unacceptable. The 

proposed indexes are compared with univariate and 

multivariate indexes in the literature. It was observed that, 

compared to the other indexes, the most efficient weighted 

approach in assessing a multivariate measurement system was 

by the explanation percentage of the eigenvalues extracted 

from measurement system matrix. 

Keywords: measurement system analysis, repeatability and 

reproducibility, multivariate analysis of variance, simulation  

 

1. Introduction 

To draw inferences regarding products and process quality, 

manufacturers use quantitative methods. Such methods (e.g., 

process capability indexes and control charts) incorporate data 

into the decision-making process. Prior to obtaining data, a 

manufacturer should help ensure its validity by evaluating the 

measuring device (Majeske, 2008). According to Wu et al. 

(2009), the inevitable variations in process measurements arise 

from two sources: the manufacturing process and the gage. In 

manufacturing, a measurement system is not used to produce 

an exact dimension of a part. Such a system provides 

measurements that, due to errors (random and systematic), 

vary from the true value (AIAG, 2010). In any activity 

involving measurements, whatever observed variability not 

due to the product/process itself,
2
Pσ , is due to measurement 

error or variability in the measurement system, 
2
SMσ  (Costa et 

al., 2005; Li and Al-Refaie, 2008; Senol, 2004; Woodall and 

Borror, 2008).  

Quality improvement projects are often characterized by 

their objective to reduce variability and achieve zero-defect 

production. If a product fails to conform to these standards, 

analysts generally blame the process and then act to improve 

process capability. In some instances, however, the process 

capability may be fine. Yet the measurement error, when 

compared to the variability of the process, remains 

unacceptable (Al-Refaie and Bata, 2010).  Hence, before a 

team of analysts tries to improve a process, they should 

investigate both the variability of the measurement process as 

well as the variability of the manufacturing process. To 

identify the components of variations in the precision and 

accuracy assessments of measuring instruments, researchers 

often rely on measurement system analysis (MSA). The 

purposes of MSA are to: (1) determine the extent of the 

observed variability caused by a test instrument, (2) identify 

the sources of variability in a testing system, and (3) assess the 

capability of a test instrument (Burdick et al., 2003). 

According to He et al. (2011), MSA is an important element of 

Six Sigma as well as of the ISO/TS 16949 standards. Gage 

Repeatability and Reproducibility (GR&R) is the most 

common study in MSA to evaluate statistical variations in the 

measurement process. Repeatability is the variation in 

measurements obtained by one measuring instrument when 

used several times by one appraiser while measuring an 

identical characteristic on the same part. Reproducibility is the 

variation in the average of measurements made by different 

appraisers using the same gage when measuring a 

characteristic on one part (Awad et al., 2009; Burdick et al., 

2003; Erdmann et al., 2010; Polini and Turchetta, 2004; Van 

Den Heuvel and Trip, 2002; Wu et al., 2009). GR&R aims to 

determine that a measurement system’s variability is less than 

that of the monitoring process (Al-Refaie and Bata, 2010; 

Wang and Chien, 2010). 

As emphasized above, a team of analysts, before analyzing 

the process capability of a quality improvement project, 

should evaluate the capability of the measurement system. 

Two methods commonly used in the analysis of a GR&R 

study are: (1) an analysis of variance (ANOVA) approach 

followed by estimation of the appropriate variance 

components; and (2) an X-bar and Range chart that estimates 

the standard deviations of the components of gage variability 

(Wang and Chien, 2010). Analysts prefer the ANOVA method 

because it measures the operator-to-part interaction gage error; 

this variation is not included in the X-bar and Range method 

(AIAG, 2010). Burdick et al. (2003) provided a good review 

of methods for conducting and analyzing measurement system 



capability studies, which are based on the analysis of variance 

approach. Dejaegher et al. (2006) used Six Sigma to measure, 

analyze, and improve the capability of a procedure required in 

the testing of the quality of an active pharmaceutical 

ingredient. This was done using multiple GR&R studies to 

analyze the capability of the measurement procedure. A design 

of experiments was next designed to improve this procedure. 

Kaija et al. (2010) used the Six Sigma DMAIC (define, 

measure, analyze, improve, control) approach to evaluate a 

process of printing a dielectric layer with an inkjet 

printer. Initially, a GR&R study was conducted to evaluate the 

proportion of variation caused by the measurement system and 

process variation. Experiments were then planned and 

analyzed to identify the parameters having the most significant 

effects on the output variables of the dielectric layer’s 

insulating layer and surface roughness. Li and Al-Refaie 

(2008) used the Six Sigma DMAIC procedure to improve 

quality through enhancing the measuring system capability of 

the wood industry. The measurement system assessed through 

GR&R had been considered unacceptable. To improve it, 

analysts implemented corrective actions, including operator 

training, proper selection of measuring instruments, and 

improved measuring procedures. In a second GR&R study, the 

authors concluded that the corrective actions had reduced the 

%R&R index (percentage of repeatability and reproducibility) 

by 39.38% and had improved the ndc index (number of 

distinct categories) by 168.84%. 

Other studies have employed GR&R to evaluate 

measurement systems. In proposing a procedure to evaluate 

measurement systems and process capabilities, Al-Refaie and 

Bata (2010) used GR&R along with four quality 

measures. The quality measures were: precision-to-tolerance 

ratio (P/T), signal-to-noise ratio (SNR), discrimination ratio 

(DR), and process capability index (Cp or Cpk). Costa et 

al. (2005) addressed the design and implementation of a 

measurement system that permitted the evaluation—

quantitatively, objectively, and systematically—of the 

superficial paper waviness in industrial practice. The process 

of designing the measurement system was presented 

considering all its stages, from selection and evaluation of the 

measuring device (using GR&R) to the generation and 

validation of the statistical model of measurement. Senol 

(2004) used an experimental design including laboratory 

factors as a measurement variability factor in MSA 

studies. This study concluded that environmental and 

atmospheric conditions, often overlooked in GR&R studies, 

might represent a significant contribution to the variability in 

measurements. Majeske (2012a) presented a methodology for 

MSA under two conditions: the measuring device is robust to 

minor differences in how a part is oriented in the measuring 

fixture and the quality characteristic has within-part 

variability. Using a standard MSA approach, the gauge did not 

satisfy the approval criteria, suggesting that the gauge was not 

capable of precisely measuring the component. As a result, the 

author concluded that a gauge that has very good precision can 

fail the standard techniques if it does not satisfy their 

assumptions. Weaver et al. (2012) used a Bayesian approach 

to estimate variance components in GR&R studies. In their 

article, worked examples of gauge R&R data analysis for 

types of studies common in industrial applications were 

provided. The results of this study indicate that a Bayesian 

approach to analyzing these data is much simpler and requires 

very few changes to an estimation procedure when adapted to 

a new situation. Majeske (2012b) developed two-sample 

hypothesis tests for five different MSA criteria to compare the 

ability of the two systems to provide precise measurements. 

The techniques were demonstrated using data from an 

automotive body manufacturing facility that compares a 

coordinate measuring machine to a noncontact vision-based 

measurement system. 

The bulk of the studies associated with analyzing the 

quality and efficiency of measurement systems are so far 

limited to a discussion of one single critical-to-quality 

characteristic (CTQ). Currently, the ANOVA method for 

GR&R studies can be applied only to univariate data (Wang 

and Yang, 2007). In assessing measurement systems that 

measure multiple characteristics, the analyst must consider the 

correlation structure of the CTQs, a task more suited to 

multivariate methods. Flynn et al. (2009) used regression 

analysis to analyze the comparative performance capability 

between two functionally equivalent but technologically 

different automatic measurement systems. The systems were 

used for acceptance testing of a unit under test. For such 

accurate measurements as repeatability and reproducibility, 

the “pass/fail” criteria for a test unit were inappropriate. 

Hence, the authors proposed a methodology that used 

principal component analysis (PCA) and multivariate analysis 

of variance (MANOVA) to examine whether there was a 

statistically significant difference between the system’s 

measurements. He et al. (2011) proposed an online 

multivariate MSA approach to detecting faulty test 

instruments in a multisite testing system. The multivariate data 

were transformed using PCA. The values of the principal 

components of each test instrument were then compared with 

the control limits obtained by analyzing the principal 

components of all test instruments. Majeske (2008) used the 

MANOVA method to estimate the variance-covariance matrix 

for GR&R studies with one, two, and three significant 

factors. This work evaluated a measurement system using data 

from a GR&R study of a sheet-metal body panel. In so doing 

it demonstrated how to adjust a MANOVA model and 

estimate multivariate criteria (P/Tm, %R&Rm and SNRm). Wang 

and Chien (2010) used the process-oriented basis 

representation method (POBREP) to evaluate a measurement 

process with multivariate data. The results showed that 

POBREP outperformed other methods such as PCA and 

ANOVA. The POBREP was able to identify specific causes of 

production problems and map those into a basis matrix. Wang 

and Yang (2007) presented a GR&R study with multiple 

characteristics using the PCA method. To assess the adequacy 

of the measurement system, the study employed two 

composite indexes: precision-to-tolerance ratio and 

measurement-variation-to-total-variation-of-measurement-

system ratio. The case study showed that, for estimating the 

indexes, PCA outperformed the ANOVA method.  

This article deals with a multivariate analysis of a 

measurement system through studies of repeatability and 

reproducibility of the measurement process. Its main objective 

is two-fold: to propose new indexes for multivariate analysis 

of a measurement system and to assess the performance 

between the proposed indexes and those found in the 

literature. The four new indexes are calculated using a 

weighted approach for multivariate analysis of variance. To 



prove their efficiency, simulated data are generated with 

different correlation structures and measurement systems that 

are unacceptable, marginal (may be acceptable depending on 

application), and acceptable. The results obtained by the 

proposed indexes are then compared to those obtained through 

indexes found in the literature. The simulation study concludes 

that the most efficient weighted approach in estimating 

multivariate indexes was by the explanation percentage of the 

eigenvalues extracted from measurement system matrix.  

The remainder of this paper is structured as 

follows. Section 2 shows how to evaluate a measurement 

system using univariate method by ANOVA. Section 3 details 

the MANOVA method and the four multivariate indexes 

proposed in this article. In Section 4, a simulation study is 

conducted to evaluate the indexes’ performance, especially the 

multivariate, for different correlation structures as well as for 

measurement systems that are unacceptable, marginal, and 

acceptable. Finally, Section 5 presents the main findings 

involving the analysis using univariate and multivariate 

methods for assessing multivariate measurement systems.  

 

2. MSA by univariate GR&R study  

In many processes involving measurements of 

manufactured products for a single CTQ, the variability may 

be due to a measurement error, to variability in the measuring 

device, or to variability in the product/process itself. A 

complete model for a GR&R study with p parts, o operators, 

and r replicates is made up of a two-factor crossed design with 

interaction as such (Al-Refaie and Bata, 2010; Burdick et al., 

2003; Deldossi and Zappa, 2011; Erdmann et al., 2010): 
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is the response variable measured; µ  is the mean 

of the measured values; ),0(~ ασα Ni , ),0(~ βσβ Nj ,

 ),0(~ αβσαβ Nij and ),0(~ εσε Nijk

 

are random variables 

statistically independent part, operator, interaction and the 

error term, respectively. The above components of variance 

can be translated into notation GR&R to (Kaija et al., 2010; Li 

and Al-Refaie, 2008; Senol, 2004; White and Borror, 2011): 
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The variance components of Model (1) in Eq (2) can be 

estimated using the method Analysis of Variance 

(ANOVA). More details on how to calculate the components 

of variation using ANOVA can be found in Majeske (2008) 

and Wang and Chien (2010). 

To determine the acceptability of a measurement system, 

the AIAG (2010) recommended evaluating a measurement 

system by scaling the standard deviation of measurement error 

to the total standard deviation of the observed process. This 

statistic, called the percentage of R&R, is defined as: 
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(3) 

If the measurement system is, according to the index, less 

than 10%, it is considered acceptable. If between 10% and 

30%, it is considered marginal—acceptable depending on the 

application, the cost of the measurement device, the cost of 

repair and other factors. If it exceeds 30%, it is considered 

unacceptable and should be improved (AIAG, 2010; Al-Refaie 

and Bata, 2010; Woodall and Borror, 2008). 

 

3. MSA by multivariate GR&R study  

When a GR&R study considers a two-factors cross design 

with interaction for multiple CTQs (q characteristics), the 

model is given by (He et al., 2011; Majeske, 2008; Wang and 

Chien, 2010):  
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where CTQ = (CTQ1, CTQ2,…, CTQq,) and µ=(µ1, µ2,…, µq) 

are constant vectors; αi~N(0,����α), βj~N(0,����β), αβij~N(0,����αβ), 

and εijk~N(0,����ε) are random vectors statistically independent 

of each other. It is possible to translate the above components 

of variance into notation GR&R to: 
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The variance components of the model (4) in Eq. (5) can 

be estimated using the method of Multivariate Analysis of 

Variance (MANOVA). Before estimating the variance-

covariance matrices, PΣ , MSΣ  and TΣ  are calculated mean 

squares matrices for part, operator, part
*
operator interaction 

and the error term. More details on how to calculate these 

components of variation using MANOVA for multivariate 

GR&R studies can be found in Majeske (2008).  

The multivariate version of the %R&R index proposed by 

Majeske (2008) is called here G index and is calculated by Eq. 

(6). qi
ii TMS ,...,2,1and =∀λλ  are eigenvalues extracted from 

variance-covariance matrices, MSΣ  and TΣ .  
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To obtain the evaluation index to the measurement system, 

Majeske (2008) applied geometric mean on the ratio

TMS λλ . This strategy does not determine greater 



importance to the most significant pair of eigenvalues, 

extracted from variance-covariance matrices. As a result, this 

article adopts a weighted approach upon TMS λλ  ratio to 

propose four new evaluation indexes for multivariate 

measurement systems. These new indexes, WAT, WAMS, WGT 

and WGMS, can be obtained based on Eqs. (7) and (8). 
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where SMλ  and Tλ  are eigenvalues extracted from variance-

covariance matrices MSΣ̂  and TΣ̂ , respectively; 

qiWi ,...,1=∀  are the explanation percentage of the 

eigenvalues extracted from either ( )∑ =
=

q

j TTi ji
W

1
:ˆ λλTΣ  or 

( )∑ =
=

q

j SMSMi ji
W

1
:ˆ λλMSΣ . The WAT and WAMS indexes 

are obtained by calculating the weighted arithmetic mean 

according to Eq. (7). The first index, WAT, weights the 

TMS λλ  ratio using the explanation percentage of the 

eigenvalues extracted from total variation matrix. The second 

index, WAMS, weights the TMS λλ  ratio through the 

explanation percentage of the eigenvalues extracted from 

measurement system matrix. On the other hand, the WGT and 

WGMS indexes are calculated using weighted geometric mean 

in the Eq. (8). The first index, WGT, weights the TMS λλ  

ratio using the explanation percentage of the eigenvalues 

extracted from total variation matrix. The second index, 

WGMS, weights the TMS λλ  ratio through the explanation 

percentage of the eigenvalues extracted from measurement 

system matrix. The acceptance criterion of the measurement 

system is the same as described in section 2 (Majeske, 2008). 

 

4. Simulation 

5.1 Detailing the simulation study 

The purpose of this simulation is to evaluate several 

possible situations in multivariate analysis of a measurement 

system and to compare the results achieved, primarily, through 

multivariate indexes. Simulated data will be generated for 

measurement systems that are unacceptable (%R&Rm>30%), 

marginal (10%<%R&Rm<30%) and acceptable 

(%R&Rm<10%), as well as correlations that are very low 

(W1≤65%), low (65%<W1≤75%), medium (75%<W1≤85%), 

high (85%<W1≤95%), and very high (W1>95%), a total of 15 

scenarios and 1800 simulated measurements. W1 is the result 

obtained from ∑ =

q

j TT j11
λλ . Simulated data were generated 

from the information in Table 1, according to the same amount 

of CTQs, parts, operators and replicates in Majeske (2008), 

q=4, p=5, o=2, and r=3.  The data for the 15 simulated 

scenarios can be found in 

http://www.pedro.unifei.edu.br/download/tables.rar. 

 

Table 1  
Mean vectors and variance-covariance matrices used to generate simulated data with different correlations and measurement systems. 

Scenarios 
Mean vectors 

Variance-covariance matrix 
P1O1 P2O1 P3O1 P4O1 P5O1 P1O2 P2O2 P3O2 P4O2 P5O2 

1 

Very Low corr. 

Unacceptable MS 

4.00  8.00  6.00 10.00  5.00 4.10  8.10  5.90  9.90  4.90 

















10.292.176.150.1
92.180.163.139.1
76.163.150.127.1
50.139.127.110.1

 
8.00  6.00 13.00  9.00 11.00 7.90  6.10 12.90  9.10 10.90 

9.00 10.00 13.00 16.00  7.00 9.10 10.10 12.90 15.90  7.10 

7.00 11.00  5.00 10.00 15.00 7.10 10.90  5.10 10.10 15.10 

2 

Low corr. 

Unacceptable MS 

4.00  8.00  6.00 10.00  5.00 4.10  8.10  5.90  9.90  4.90 

















10.292.176.150.1
92.180.163.139.1
76.163.150.127.1
50.139.127.110.1

 
8.00  7.00  9.00 12.00 11.00 7.90  6.90  9.10 12.10 10.90 

9.00 10.00  7.00 13.00 15.00 9.10 10.10  6.90 13.10 14.90 

7.00 13.00 11.00 14.00 17.00 7.10 13.10 11.10 13.90 16.90 

3 

Medium corr. 

Unacceptable MS 

9.00  7.00  5.00 12.00 10.00 9.01  6.99  5.01 12.01  9.99 

















10.292.176.150.1
92.180.163.139.1
76.163.150.127.1
50.139.127.110.1

 
8.00  7.00  9.00 12.00 11.00 7.99  6.99  9.01 12.01 10.99 

9.00 10.00  7.00 13.00 15.00 9.01 10.01  6.99 13.01 14.99 

7.00 13.00  9.00 17.00 14.00 7.01 13.01  8.99 16.99 14.01 

4 

High corr. 

Unaccpetable MS 

6,00 4,00 8,00 10,00 12,00 6,01 4,01 7,99 9,99 12,01 

















90.183.178.167.1
83.180.173.163.1
78.173.170.158.1
67.163.158.150.1

 

3,00 6,00 9,00 11,00 15,00 3,01 6,01 9,01 10,99 14,99 

6,00 8,00 11,00 15,00 13,00 6,01 8,01 11,10 15,10 13,10 

8,00 10,00 12,00 16,00 14,00 7,99 10,01 12,01 16,01 14,01 

5 

Very high corr. 

Unacceptable MS 

4.00  6.00  8.00 10.00 12.00 4.01  6.01  7.99  9.99 12.01 

















10.292.176.150.1
92.180.163.139.1
76.163.150.127.1
50.139.127.110.1

 
5.00  7.00  9.00 11.00 13.00 5.01  7.01  9.01 10.99 12.99 

6.00  8.00 10.00 12.00 14.00 6.01  8.01  9.99 11.99 13.99 

8.00 10.00 12.00 14.00 16.00 7.99 10.01 12.01 14.01 15.99 

6 

Very Low corr. 

Marginal MS 

4.00  8.00  6.00 10.00  5.00 4.10  8.10  5.90  9.90  4.90 

















42.038.035.030.0
38.036.033.028.0
35.033.030.025.0
30.028.025.022.0

 
8.00  6.00 13.00  9.00 11.00 7.90  6.10 12.90  9.10 10.90 

5.00  8.00  9.00 14.00 12.00 5.10  8.10  8.90 13.90 12.10 

7.00 13.00  5.00 10.00 17.00 7.10 13.10  5.10 10.10 16.90 

7 

Low corr. 

Marginal MS 

6.00  8.00  4.00 11.00 10.00 6.10  8.10  3.90 10.90  9.90 

















42.038.035.030.0
38.036.033.028.0
35.033.030.025.0
30.028.025.022.0

 
8.00  7.00  9.00 12.00 11.00 7.90  6.90  9.10 12.10 10.90 

7.00 13.00 10.00 11.00 15.00 7.10 13.10  9.90 11.10 14.90 

9.00 11.00 14.00 13.00 17.00 9.10 10.90 14.10 12.90 16.90 



8 

Medium corr. 

Marginal MS 

9.00  7.00  5.00 12.00 10.00 9.01  6.99  5.01 12.01  9.99 

















42.038.035.030.0
38.036.033.028.0
35.033.030.025.0
30.028.025.022.0

 
8.00  7.00  9.00 12.00 11.00 7.99  6.99  9.01 12.01 10.99 

9.00 10.00  7.00 13.00 15.00 9.01 10.01  6.99 13.01 14.99 

7.00 13.00  9.00 17.00 14.00 7.01 13.01  8.99 16.99 14.01 

9 

High corr. 

Marginal MS 

6,00 4,00 8,00 10,00 12,00 6,01 4,01 7,99 9,99 12,01 

















42.038.035.030.0
38.036.033.028.0
35.033.030.025.0
30.028.025.022.0

 
3,00 6,00 9,00 11,00 15,00 3,01 6,01 9,01 10,99 14,99 

6,00 8,00 11,00 15,00 13,00 6,01 8,01 11,10 15,10 13,10 

8,00 10,00 12,00 16,00 14,00 7,99 10,01 12,01 16,01 14,01 

10 

Very high corr. 

Marginal MS 

4.00  6.00  8.00 10.00 12.00 4.01  6.01  7.99  9.99 12.01 

















42.038.035.030.0
38.036.033.028.0
35.033.030.025.0
30.028.025.022.0

 
5.00  7.00  9.00 11.00 13.00 5.01  7.01  9.01 10.99 12.99 

6.00  8.00 10.00 12.00 14.00 6.01  8.01  9.99 11.99 13.99 

8.00 10.00 12.00 14.00 16.00 7.99 10.01 12.01 14.01 15.99 

11 

Very Low corr. 

Acceptable MS 

4.00  8.00  6.00 10.00  5.00 4.10  8.10  5.90  9.90  4.90 

















07.006.006.005.0
06.006.006.005.0
06.005.005.004.0
05.005.004.004.0

 
8.00  6.00 13.00  9.00 11.00 7.90  6.10 12.90  9.10 10.90 

5.00  8.00  9.00 14.00 12.00 5.10  8.10  8.90 13.90 12.10 

7.00 13.00  5.00 10.00 17.00 7.10 13.10  5.10 10.10 16.90 

12 

Low corr. 

Acceptable MS 

6.00  8.00  4.00 11.00 10.00 6.01  8.01  3.99 10.99  9.99 

















07.006.006.005.0
06.006.006.005.0
06.005.005.004.0
05.005.004.004.0

 
7.00  5.00  9.00 13.00 11.00 6.99  4.99  9.01 13.01 10.99 

7.00 13.00 10.00 11.00 15.00 7.01 13.01  9.99 11.01 14.99 

6.00 10.00 14.00 12.00 17.00 6.01  9.99 14.01 12.01 16.99 

13 

Medium corr. 

Acceptable MS 

9.00  7.00  5.00 12.00 10.00 9.01  6.99  5.01 12.01  9.99 

















07.006.006.005.0
06.006.006.005.0
06.005.005.004.0
05.005.004.004.0

 
8.00  7.00  9.00 12.00 11.00 7.99  6.99  9.01 12.01 10.99 

9.00 10.00  7.00 13.00 15.00 9.01 10.01  6.99 13.01 14.99 

7.00 13.00  9.00 17.00 14.00 7.01 13.01  8.99 16.99 14.01 

14 

High corr. 

Acceptable MS 

6,00 4,00 8,00 10,00 12,00 6,01 4,01 7,99 9,99 12,01 

















07.006.006.005.0
06.006.006.005.0
06.005.005.004.0
05.005.004.004.0

 
3,00 6,00 9,00 11,00 15,00 3,01 6,01 9,01 10,99 14,99 

6,00 8,00 11,00 15,00 13,00 6,01 8,01 11,10 15,10 13,10 

8,00 10,00 12,00 16,00 14,00 7,99 10,01 12,01 16,01 14,01 

15 

Very high corr. 

Acceptable MS 

4.00  6.00  8.00 10.00 12.00 4.01  6.01  7.99  9.99 12.01 

















07.006.006.005.0
06.006.006.005.0
06.005.005.004.0
05.005.004.004.0

 
5.00  7.00  9.00 11.00 13.00 5.01  7.01  9.01 10.99 12.99 

6.00  8.00 10.00 12.00 14.00 6.01  8.01  9.99 11.99 13.99 

8.00 10.00 12.00 14.00 16.00 7.99 10.01 12.01 14.01 15.99 

 

5.2 Criterion of methods’ assessment 

This simulation study will focus only on the comparison of 

multivariate index obtained by MANOVA method. For each 

scenario, it was tried to obtain close %R&R index values for 

CTQ1, CTQ2, CTQ3, and CTQ4. Thus, multivariate indexes 

are expected to be estimated close to those obtained by 

ANOVA method. The criterion used in this work to determine 

if the estimated multivariate index is correct is based on 

confidence intervals for mean calculated from results obtained 

by ANOVA method. The lower (LCL) and upper (UCL) limits 

of the confidence intervals are calculated using 

N

s
tCTQCI N 2,1 α−±=

    

(9) 

where CTQ  is the mean of %R&R between CTQ1, CTQ2, 

CTQ3 and CTQ4; s is the standard deviation; N is the sample 

size and α,1−Nt  is the ( ) th1001 α−

 

percentile of a t distribution 

with ( )1−N  degrees of freedom. Note that it would not make 

sense to evaluate situations in which CTQs determine distinct 

classifications to the measurement system. For instance , 

CTQ1 and CTQ2 classify the measurement system as 

unacceptable and, on the other hand, CTQ3 and CTQ4 classify 

the measurement system as acceptable. In such situations, the 

confidence interval would be wider, thereby, %R&Rm indexes 

would be easily estimated inside the limits. 

5.3 Result Analysis 

Table 2 presents the results of calculations of the %R&R 

index, the mean value and the 95% confidence interval, as 

well as the multivariate evaluation indexes. Moreover, Fig. 1 

graphically presents how accurate the multivariate indexes 

were estimated compared to the 95% confidence interval. The 

analysis and comparison will be performed in two ways: intra- 

and inter-indexes. The intra-index analysis will provide an 

overview of the indexes’ performance and, on the other hand, 

the inter-index analysis will seek to justify the indexes’ 

deviations from the confidence intervals. 

In the intra-index analysis was verified that WAMS and 

WGMS indexes were more robust than G, WAT and WGT. G 

index was estimated within the confidence interval only in 

scenarios S9, S11 and S14. WAT and WGT indexes failed in 

one and six scenarios, respectively. As seen in Table 2, WAMS 

and WGMS indexes were estimated within the confidence 

interval for all 15 scenarios evaluated.  

For the inter-index analysis, Table 3 presents how the G 

index was estimated for the 15 simulated scenarios. In 

addition, through Fig. 1 is verified that this G index was 

calculated within of the confidence interval only in S9, S11 

and S14. This index was obtained using geometric mean of the 

TMS λλ ratio according to the amount of quality 

characteristics. This simulation study dealt with four 

characteristics. Thus, four eigenvalues of the MSΣ̂ and TΣ̂

matrices were extracted.  If the individual ratio TMS λλ  for 



each pair of eigenvalues, in MSΣ̂ and TΣ̂ , provide different 

interpretations, G index may not represent well the 

performance of the measurement system. Indeed, geometric 

mean provides the same degree of importance in the analysis 

of each pair of eigenvalues. Nevertheless, it is known that the 

first eigenvalues have a greater percentage of explaining the 

measured phenomenon greater than the last eigenvalues. 

Therefore, the need is confirmed that some form of weighting 

for the calculation of this index should be used. In the inter-

index analysis by WAT and WGT, the weighting approach 

through the explanation percentage of the eigenvalues 

extracted from ( )∑ =
=

q

j TTi ji
W

1
:ˆ λλTΣ  was not 

satisfactory. These indexes (mainly WGT) failed in scenarios 

with correlations deemed lower due to higher weights assigned 

to less significant TMS λλ ratios.  

In the inter-index analysis by WAMS and WGMS, the 

explanation percentage of the eigenvalues extracted from

( )∑ =
=

q

j SMSMi ji
W

1
:ˆ λλMSΣ  showed to be the most efficient 

weighting approach for assessing a multivariate measurement 

system. In the most scenarios, the first pair of eigenvalues to 

calculate TMS λλ   ratio receives greater degree of 

importance, including scenarios with lower structure 

correlations. Conceptually, the weighted approach using the 

explanation percentages of the eigenvalues extracted from 

measurement system matrix makes more sense than from total 

variation matrix, in estimating evaluation index for GR&R 

studies. 

 

Table 2 

Results for calculations of the %R&R index, mean and 95% confidence interval, and %R&Rm index. 

SCENARIO  UNIVARIATE (%R&R)  MEAN CI  MULTIVARIATE 

S MS Corr.  CTQ1 CTQ2 CTQ3 CTQ4  CTQ  LCL UCL  G WAT WGT WAMS WGMS 

S1 

U
n
ac

ce
p

t.
 VL  49.9 39.3 38.3 34.1  40.42 29.69 51.14  10.78 31.62 18.28 48.84 48.51 

S2 L  42.2 55.5 44.3 39.8  45.44 34.42 56.47  13.30 36.50 30.28 45.42 44.94 
S3 M  40.8 52.4 42.6 36.9  43.18 32.63 53.72  11.32 38.27 31.45 45.76 45.51 
S4 H  45.3 33.2 41.2 47.8  41.86 31.70 52.03  28.15 42.95 42.20 44.33 44.14 
S5 VH  31.1 34.9 37.8 41.1  36.21 29.45 42.97  64.09 35.81 35.79 36.05 35.94 
S6 

M
ar

g
in

al
 VL  15.8 14.1 13.7 10.2  13.48 9.75 17.21  4.97 9.62 6.48 15.67 15.38 

S7 L  18.6 27.2 21.3 24.1  22.82 16.95 28.69  10.04 19.86 14.68 27.15 26.87 
S8 M  15.5 23.7 17.0 14.6  17.69 11.16 24.21  5.40 15.38 13.24 18.02 17.90 
S9 H  13.2 10.3 13.6 16.9  13.50 9.19 17.80  14.31 14.37 14.35 14.44 14.43 
S10 VH  15.2 19.0 19.7 20.9  18.70 14.80 22.59  47.23 16.95 16.94 17.33 17.12 
S11 

A
cc

ep
t.

 VL  8.4 6.3 4.9 5.3  6.22 3.67 8.77  4.08 5.00 4.41 6.75 6.49 
S12 L  5.6 4.6 6.7 5.4  5.54 4.15 6.92  2.01 4.70 3.53 6.18 6.13 
S13 M  6.2 9.6 6.6 5.9  7.07 4.37 9.76  2.28 6.07 5.32 7.05 7.00 
S14 H  5.7 4.5 5.9 7.3  5.84 4.00 7.69  7.22 6.58 6.56 6.65 6.63 
S15 VH  6.5 7.6 8.6 9.2  7.95 6.07 9.83  39.35 7.78 7.78 8.18 7.89 

 

 

Fig. 1. Multivariate evaluation indexes estimated for 15 distinct scenarios 
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Table 3 
G index for the inter-method analysis. 

S  CTQ  LCL UCL  
11 TMS λλ  

22 TMS λλ  
33 TMS λλ  

44 TMS λλ   G 

S1  40.42 29.69 51.14  49.07(61.2a) 3.29 (27.4) 5.13 (10.5) 16.34 (0.9)  10.78 

S2  45.44 34.42 56.47  45.90 (74.6) 9.35 (13.9) 8.32 (7.7) 8.76 (3.9)  13.30 

S3  43.18 32.63 53.72  45.97 (80.4) 5.81 (10.8) 7.80 (5.2) 7.87 (3.6)  11.32 

S4  41.86 31.70 52.03  43.30 (87.3) 52.70 (8.6) 14.66 (3.1) 18.78 (1.1)  28.15 

S5  36.21 29.45 42.97  37.75 (99.8) 51.77 (0.2) 98.97 (0.0) 92.13 (0.0)  64.09 

S6  13.48 9.75 17.21  15.94 (53.4) 2.14 (29.0) 2.40 (16.3) 7.43 (1.3)  4.97 

S7  22.82 16.95 28.69  27.39 (67.7) 4.44 (18.3) 3.37 (13.9) 24.73 (0.2)  10.04 

S8  17.69 11.16 24.21  18.15 (81.2) 3.00 (11.0) 4.45 (4.6) 3.51 (3.2)  5.40 

S9  13.50 9.19 17.80  14.50 (90.4) 14.24 (6.9) 10.03 (2.6) 20.27 (0.1)  14.31 
S10  18.70 14.80 22.59  16.92 (99.9) 56.75 (0.0) 70.15 (0.0) 73.86 (0.0)  47.23 

S11  6.22 3.67 8.77  7.27 (50.4) 2.80 (34.5) 2.21 (34.5) 6.14 (14.2)  4.08 
S12  5.54 4.15 6.92  6.23 (71.5) 0.95 (15.5) 0.73 (12.7) 3.80 (0.3)  2.01 

S13  7.07 4.37 9.76  7.11 (81.5) 1.34 (10.6) 1.69 (4.6) 1.68 (3.3)  2.28 

S14  5.84 4.00 7.69  6.59 (90.8) 7.39 (6.4) 4.10 (2.8) 13.63 (0.1)  7.22 
S15  7.95 6.07 9.83  7.78 (100.0) 38.19 (0.0) 98.44 (0.0) 82.04 (0.0)  39.35 

a
 qiq

j TT ji
,,2,11 K=∑ = λλ  

5. Conclusions 

This article addressed the multivariate analysis of 

measurement systems through studies of repeatability and 

reproducibility of the measurement process. The main 

contribution of this paper is its proposal for new indexes for 

multivariate analysis of the measurement system by 

multivariate analysis of variance. To prove the efficiency of 

the indexes, simulated data were generated with different 

correlation structures for measurement systems considered 

acceptable, marginal, and unacceptable. The results obtained 

by the proposed indexes were compared to those obtained by 

the multivariate index in the literature. Statistical analysis 

provided the following conclusions: 

1. G index uses geometric mean for evaluating the 

measurement system. This approach may be incorrect when 

the ratio TMS λλ  for each q pair of eigenvalues provide 

significant difference for their calculations. Some form of 

weighting for the calculation of this index must be used; 

2. WAT and WGT indexes use the weighting approach 

through the explanation percentage of the eigenvalues 

extracted from the total variation matrix. These indexes 

(mainly WGT) failed in scenarios with lower correlation 

structure due to higher weights assigned to less significant 

TMS λλ ratios. 

3. Taking the simulation study into account, WAMS and 

WGMS were more robust indexes for assessing a multivariate 

measurement system. These indexes were able to overcome 

shortcomings such as: to provide an single assessment for all 

CTQs in multivariate GR&R study; to estimate indexes inside 

the confidence interval even when the correlation structure of 

CTQs is considered very low; and to provide a strategy of 

weighting that guarantee greater importance for the most 

significant TMS λλ  ratio. 
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